Icelandic Quirky Agreement Restrictions
Andrew Lee Zupon
The University of Utah
andrew.zupon@gmail.com
Icelandic Quirky Agreement Restrictions
In this paper I propose a novel defective T analysis for explaining two facts about Icelandic quirky subject sentences. First, the verb agrees with the nominative object rather than with the subject. Second, 1st and 2nd person nominative objects are blocked completely. I argue that T in Icelandic quirky subject sentences is φ-defective, lacking [Person]. I also describe three potential alternative analyses of Icelandic: (i) a φ-stacking analysis; (ii) a complex dependency analysis; and (iii) a split φ probe analysis. These three alternatives come with theoretical baggage that makes them suboptimal for explaining the Icelandic facts compared with my Defective T analysis. *Keywords:* Case, Agreement, Quirky Case, Icelandic, Defective T

Thanks to Prof. Ed Rubin, Prof. Aniko Csirmaz, Prof. Shannon Barrios, Prof. Rachel Hayes-Harb, Cole Brendel, Mengqi Wang, Jeff Pynes, Christina Young, Ívar Finnbogason, Hlif Arnadottir, attendees of MOTH 2015, and many others.
1 Introduction

Case is often classified as structural or lexical. Lexical case can be further divided into predictable thematic case and unpredictable idiosyncratic case. Idiosyncratic lexical case is also sometimes called quirky case. Icelandic exhibits quirky case phenomena. In a nominative-accusative language like Icelandic, subjects usually take nominative and direct objects usually take accusative. In these constructions, as in 1, the finite verb always agrees in person, number, and gender with the subject.

(1) Einhver keupti bækurnar.
 someone.3SG bought.3SG the books.3PL
 ‘Someone bought the books.’

Icelandic also has quirky case, which allows for other case and agreement configurations. Quirky case is often generalized as nonnominative markings on subjects and nonaccusative markings on direct objects (Schütze 1993). A more complete and accurate description would be idiosyncratic lexical case marking, as described above (Thráinsson 2007). In 2, dative case on the subject is quirky. In 3, both accusative case on the subject and accusative case on the object are quirky. In 4, genitive case on the object is quirky.

(2) Mér líkar þessir bílar.
 me.DAT likes these cars.NOM
 ‘I like these cars.’

(3) Mig vantar peninga.
 me.ACC lacks money.ACC
 ‘I lack money.’

(4) Ég saknaði hans.
 I.NOM missed him.GEN
 ‘I missed him.’

In Icelandic quirky subject sentences, the finite verb does not agree with the quirky subject. Instead, it appears to agree with the nominative object, when one is present. I show this in 5.

(5) Henni leiddust strákarnir.
 her.3SG.DAT bored.3PL the boys.3PL.NOM
 ‘She found the boys boring.’

Another empirical fact about Icelandic quirky subject constructions is that they prohibit 1st and 2nd person nominative objects. No pattern of agreement, whether subject- object-,
4

or default-agreement, allows a 1st or 2nd person nominative object in these constructions. Compare 6 below, with a 1st person nominative object, with 5 above, which has a 3rd person nominative object.

(6) Henni *leiddumst/?leiddust/?leiddist við.
her.3SG.DAT bored.*1PL/?*3PL/?*DFT we.1PL.NOM
‘She found us boring.’

1.1 Research Questions

The research questions I investigate here address the issues of object agreement and the 1st/2nd person nominative object restriction in Icelandic quirky subject constructions: (i) Why does the finite verb show overt agreement with the nominative object rather than with the quirky subject?; (ii) Why are 1st and 2nd person nominative objects blocked in quirky subject constructions?

1.2 Roadmap

In this section, I provided a general description of the Icelandic quirky case data and my research questions. In §2, I will describe my theoretical framework, which is based in the Minimalist program. In §3, I will describe the four analyses that I consider to answer my two research questions, including the defective T analysis that I adopt. In §4, I will conclude with a summary of the four analyses I have considered here and possible directions for future research.

2 Theoretical Framework

Many previous analyses of Icelandic quirky case predate the Minimalist Program, or at least make use of an earlier version of it. These previous analyses used theoretical components that are either non-Minimalist, nonstandard, or are now undesirable for various reasons, such as AgrXPs (Schütze 1993, Sigurðsson 1996), Distributed Morphology (Boeckx 2000), and the Person-Case Constraint (Bonet 1994, Boeckx 2000).

The theoretical framework that I adopt as the basis for my analyses is the Minimalist Program (Chomsky 1995, 2000, 2001, 2004). From the Minimalist Program, I adopt the operation AGREE, the use of probe-goal agreement, the ACTIVITY CONDITION on feature checking, and relative φ-completeness as a requirement for feature checking. Outside of the core of Minimalism, I adopt a few other assumptions. Most importantly, I assume that only 1st and 2nd person DPs are [+Person].
2.1 The Minimalist Program

The main goal of the Minimalist Program (Chomsky 1995, 2000, 2001, 2004) is to eliminate anything from our theory of syntax that is not explicitly required at our language interfaces (Articulatory-Perceptual and Conceptual-Intentional). This is referred to as the STRONG MINIMALIST THESIS (SMT). This theoretical framework eliminates many theoretically unnecessary components, such as the distinction between deep structure and surface structure, spec-head agreement configurations, and covert movement.

The core Minimalist components that I adopt for my analyses are Agree (Chomsky 2001), the use of the Activity Condition in feature checking (Chomsky 2001; Hornstein et al. 2005), a probe-goal system of agreement (Chomsky 2001), and relative ϕ-completeness as a requirement for feature checking (Chomsky 2001).

For my analyses, the requirement for relative ϕ-completeness only relates to the set of ϕ-features on the DP. If all of the ϕ-features on a DP have a correlate on T, they are relatively ϕ-complete, even if T has additional ϕ-features\(^1\). Thus, a 3rd person subject with a ϕ-complete T will not lead to a crash. The reverse of this is not true. If the DP has extra ϕ-features that T does not have, they will not be relatively ϕ-complete, and the derivation will crash. This definition of relative ϕ-completeness, while nonstandard, will allow me to explain both quirky and nonquirky data.

2.2 [±Person] DPs

Based on the observed agreement facts, we see an asymmetry between 1st/2nd person and 3rd person, with 3rd person behaving as an outlier. To address this, I follow Boeckx (2000) and Sigurðsson (1996) in adopting the notion that only 1st/2nd person is truly [+Person].

\(^1\)In some of the examples that I present, T will end up with an unvalued [Person] feature, due to the DP being 3rd person. Since ϕ-features are uninterpretable on T by assumption, this may raise some questions. This will not necessarily lead to a crash. Other sentence types suggest that T’s ϕ-features may be able to acquire default values later in the derivation (or even postsyntactically) (Corbett 2006). For example, consider CP subjects (i) and infinitive phrase subjects (ii).

(i) [That he came so early] was very surprising.
 Corbett 2006: ex 4, p 37

(ii) [To err] is human.
 Corbett 2006: ex 5, p 37

These types of agreement controllers are not traditionally thought of as possessing ϕ-features. Despite this, CPs and infinitive phrases can be subjects, and when they are they induce what appears to be 3rd person singular agreement on the verb. In these sorts of examples, T’s ϕ-features are still uninterpretable, so they must get values somewhere. It might be argued that T obtains default values for any unvalued ϕ-features left over at some point in the derivation. This notion will recur in §3, and plays a large role in the defective T analysis that I adopt for the Icelandic data.
In these analyses, 3rd person DPs lack a [Person] feature entirely. DPs lacking [Person] is not completely novel. Further support for this notion comes from discussion of pronouns and R-expressions, which are often argued to lack φ-features.

3 Analyses

In this section, I describe four potential analyses to account for the Icelandic quirky subject data. First, I look at a φ-stacking approached based in Richards’s (2013) analysis of case-stacking in Lardil. Second, I consider a complex dependency account for the data from López (2008). Next, I analyze how split φ probing might be able to explain the data. Finally, I consider a defective T analysis, where T lacks [Person] in quirky subject sentences.

All four of these analyses seem initially capable of explaining the Icelandic data to some degree; however, all except the defective T analysis require undesirable or non-Minimalist assumptions that make them suboptimal. The defective T analysis can explain the data without relying on these undesirable assumptions. For this reason, I choose to adopt the defective T analysis for explaining the Icelandic quirky subject data.

3.1 φ-Stacking

In this section, I will show how a φ-stacking approach to Icelandic quirky case might work. This analysis involves full agreement between the quirky subject and T. After T agrees with the quirky subject, the nominative object triggers agreement with T, overriding the agreement from the quirky subject. This φ-stacking is based on Richards (2013) analysis of case-stacking in Lardil.

The main idea from Richards (2013) that I adopt for this φ-stacking approach is that semantically interpretable morphology cannot be replaced, but semantically uninterpretable morphology can be. In Japanese and Lardil, this leads to case stacking. In Russian, the semantically interpretable morphology simply remains, blocking new morphology. Before I go over the derivations for quirky and nonquirky sentences using this approach with φ features, I will first go over some key assumptions this proposal must make.

3.1.1 Assumptions

The φ-stacking analysis that I describe in this section relies on major assumptions about agreement and movement. The first major assumption is that T can agree with two different DPs in quirky constructions. This assumption goes against standard analyses of agreement, which state that once T’s uninterpretable φ-features are valued, they are deleted from the
derivation, which prevents T from agreeing with another DP for \(\varphi \) (Chomsky 2001). In the \(\varphi \)-stacking analysis, however, T first agrees with the quirky subject and then agrees a second time with the nominative object.

Another assumption that the \(\varphi \)-stacking analysis relies on is that although T can agree with both the quirky subject and nominative object in quirky case constructions, T can only ever agree with the subject in nominative-accusative sentences. There is no data to indicate that T can agree with an accusative object in nominative-accusative sentences. The goal of these proposals is to explain the Icelandic quirky phenomena, yet these assumptions seem to create further unexplained asymmetries between quirky and nonquirky constructions unless we adopt Schütze’s (2003) system of multiple agreement whereby T must agree with both the subject and with the nominative element.

One final assumption that this analysis makes use of is the assumption that [Person] is semantically interpretable in the sense of Richards (2013).

3.1.2 Derivations

In this section, I will provide derivations for quirky sentences in the \(\varphi \)-stacking analysis. I show why quirky subject sentences with 3rd person nominative objects are grammatical and why quirky subject sentences with 1st or 2nd person nominative objects are ungrammatical.

In a quirky subject sentence, first T probes its \(\varphi \)-features for the first time and finds the quirky subject, where it checks [Person], [Number], and [Gender]. This will be the same no matter the [Person] specification on the nominative object.

First I will show what happens when the nominative object is 3rd person. Next, T probes its \(\varphi \)-features a second time, now finding the nominative object as the goal. T will attempt to replace its \(\varphi \) morphology from the quirky subject with new morphology from the nominative object. The [Person] feature on T that was acquired from the quirky subject cannot be replaced, being semantically interpretable, but this is not a problem. The nominative object, being 3rd person, has no [Person] feature at all, so it cannot even try to replace the irreplaceable [Person] on T. Instead, T only replaces its [Number] and [Gender] values with new values from the nominative object.

When the nominative object is 1st or 2nd person, however, we encounter a problem. As described above, T will probe \(\varphi \) for the second time and find the nominative object. This time, however, the nominative object does have a [Person] feature. Now, since the T cannot replace its [Person] morphology with new morphology, T and the nominative object cannot effectively establish an agree relation. T and the nominative object will be relatively \(\varphi \)-defective, the nominative object cannot value its abstract Case, and the derivation will crash.
In this section, I have shown derivations for quirky sentences. The case where the nominative object is 3rd person is grammatical specifically because it lacks a [Person] feature. This avoids an agreement mismatch due to T’s irreplaceable [Person] specification from the quirky subject. I also showed why a 1st or 2nd person nominative object is ungrammatical. Because T’s [Person] specification from the quirky subject is irreplaceable, the 1st or 2nd person nominative object and T are relatively \(\varphi \)-incomplete, which leads the derivation to crash.

3.1.3 Summary

The \(\varphi \)-stacking analysis presented in this section relies on the possibility for multiple agreement of T. In quirky subject sentences, T must agree with both the quirky subject and the nominative object. In addition, this analysis requires that the person valuation on T from the quirky subject is semantically interpretable, à la Richards (2013), so it cannot be replaced by a new specification. This irreplaceability of [Person] yields the 1st and 2nd person restriction.

Despite its moderate success, the \(\varphi \)-stacking analysis has numerous shortcomings that make it insufficient. Primarily, the assumptions required for this analysis have weak theoretical backing. That T can agree with multiple DPs goes against standard conceptions of \(\varphi \)-features on T, and treating [Person] as semantically interpretable does not gain anything. Due to these generally nonstandard assumptions that need to be made, the \(\varphi \)-stacking analysis is not sufficient to answer my research questions about Icelandic quirky subject sentences.

3.2 Complex Dependency

In this section, I will describe an analysis for Icelandic that treats T, the quirky subject, and the nominative object as a complex dependency. This analysis is described by López (2008). First, I will go over López’s theoretical assumptions for this analysis, which differ from those I adopt in §2. I will then provide a brief derivation for an Icelandic quirky subject sentence using López’s system. Finally, I will conclude this section by explaining the shortcomings of López’s complex dependency analysis in explaining the Icelandic quirky subject agreement facts.

3.2.1 Assumptions

I will first explain the theoretical framework and assumptions that López (2008) adopts in his complex dependency analysis of Icelandic object agreement and the 1st/2nd person
restriction. Because this analysis is not my own, it does not align exactly with my theoretical framework from §2.

López adopts Full Sharing for his system of feature valuation, which essentially states that when two features of the same type enter into an Agree relation, they must share the same value. What is interesting in López’s system is what happens when two unvalued features [a],[b] enter into an Agree relation with each other. Full Sharing will require them to have the same values; however, since the two features have no values yet, they enter into an open dependency. Instead of becoming co-valued, the features become co-indexed. Now, if a head H probes and values [a], the dependency between [a] and [b] forces [b] to have the same valuation as [a] and H. This Agree relation between H and the open dependency formed between [a] and [b] forms a complex dependency.

In addition to Full Sharing, López adopts Minimal Compliance. López does not explain Minimal Compliance in detail, but he seems to suggest that if two elements are in a dependency D, it only minimally needs to obey Full Sharing. If two elements a and b enter into an Agree relation, they only need to satisfy Full Sharing once. For each additional feature on a and b that agrees, Full Sharing does not need to apply.

Next, López assumes that the quirky subject has an extra layer K above the DP. K has no ϕ-features. López makes other assumptions about the nature of ϕ-features on T. He adopts that [Person] on T probes separately and first, though he does not give an explanation for this. While this issue is somewhat unresolved, the standard Minimalist framework that I adopt treats ϕ-features as a bundle.

Finally, López assumes that unvalued Case can act as a probe. This is somewhat unorthodox, as typically it is only phasal heads that act as probes. López’s suggestion that something that is not a phasal head which is also a maximal category acts as a probe goes against the standard theory. These assumptions allow two nominals to enter into an Agree relation with each other and form an open dependency.

3.2.2 Derivations

Now I will provide a derivation using López’s complex dependency analysis to show how it attempts to explain the Icelandic quirky subject data.

First, the quirky subject probes its unvalued Case feature and finds the nominative object as its goal. Due to establishing an Agree relation, their Case features then become co-indexed.

Next, T’s [Person] feature probes and finds the open dependency formed by the quirky subject and nominative object. Due to Full Sharing, T, the quirky subject, and the nominative object all need to share the same [Person] value. Since K does not have a specification for [Person], the nominative object similarly cannot have a specification for [Person]. If the
nominative object is 1st/2nd person, the derivation will crash, due to a feature mismatch. When the nominative object is 3rd person the derivation converges without problems, since both K and the nominative object share the same specification for [Person] (that is, none). If the nominative object is 1st or 2nd person, on the other hand, when T’s [Person] probe finds the open dependency as its goal, the feature mismatch between K and the nominative object causes the derivation to crash.

After [Person] probes, T’s [Number] feature will probe. Since Full Sharing has already been satisfied, Minimal Compliance comes into effect. It is grammatical for K, lacking [Number], and the nominative object, possessing [Number], to form a complex dependency with T. This is why a singular or plural nominative object will both be acceptable, as long as the object is 3rd person.

3.2.3 Summary

In this section, I described the complex dependency analysis for Icelandic quirky case as detailed in López (2008). While López’s analysis is couched in a general Minimalist framework it requires a number of nonstandard assumptions to get the desired results. López assumes that the quirky subject’s unvalued abstract Case feature can act as a probe. This is crucial to form the open dependency between K and the nominative object, but López does not explain how or why this would work.

Furthermore, the complex dependency analysis makes stipulations about ϕ-features on the quirky subject. That is, López assumes the ϕ-featureless layer K. This is important for achieving the 1st/2nd person nominative object restriction, but López fails to address a number of alternative possibilities. Importantly, he discusses Full Sharing violations in the context of feature mismatches. However, he does not consider the possibility that Full Sharing might be satisfied vacuously in the event that K lacks ϕ-features. If K has no [Person] feature, any specification for [Person] on the nominative object will not lead to a feature mismatch, since K has no competing specification for [Person]. López ignores this possibility.

Due to the nonstandard and unexplained assumptions required by this complex dependency analysis, along with the gaps in the data that López ignores, the complex dependency analysis is not an optimal analysis for answering my research questions regarding the Icelandic quirky subject construction data.

3.3 Split ϕ Probing

The next analysis that I will describe involves split ϕ agreement. In this analysis, T agrees with the quirky subject for [Person], but with the nominative object for [Number]
and [Gender]. This requires T’s \(\varphi \)-features to probe separately. External support for split \(\varphi \) checking in Icelandic comes from Sigurðsson and Holmberg (2008), who provide a similar (yet crucially different) analysis of Icelandic quirky constructions that involves [Person] probing separately from [Number] and [Gender]. The split \(\varphi \) probe analysis described in this chapter was developed independently from the analysis of Sigurðsson and Holmberg (2008).

3.3.1 Assumptions

This analysis makes use of the theoretical framework that I adopt in §2, with some modifications. These additions include that the quirky subject remains active after valuing its abstract Case feature, that \(\varphi \)-features on the quirky subject behave differently than on the nominative object, and that T’s \(\varphi \) features do not probe as a single bundle, but rather act as separate probes.

This split \(\varphi \) probe analysis requires that the quirky subject remain active even after valuing its Case with the verb. This means that the quirky subject still needs to have some uninterpretable, unchecked feature after valuing Case. I label this unknown feature \([f] \). It may be tempting to treat this unknown feature as the abstract Case feature, and claim that the quirky case on the subject from the verb results from some other arrangement. However, Preminger (2014) makes an argument against abstract case on lexically-case-marked DPs. While Preminger adopts a rather different framework from the one I adopt, I agree with his point about abstract Case on lexically-case-marked DPs such as quirky subjects. However, the Minimalist framework that I adopt treats Case as a reflection of \(\varphi \) agreement. Relative \(\varphi \)-completeness is a requirement for feature checking and Case licensing, but in this analysis, the quirky subject only checks [Person]. Unless I adopt a version of López’s assumption whereby the quirky subject only has [Person], this will not work. Thus, for this analysis, I resort to the mysterious \([f] \).

This analysis also requires an unorthodox treatment of \(\varphi \)-features on quirky subjects. Only [Person] gets checked with the quirky subject, with [Number] and [Gender] checking with the object. Relative \(\varphi \)-completeness makes ungrammatical a configuration where the object has [Person], [Number], and [Gender], but T only has the latter two. This is what will derive the 1st/2nd person restriction. If we come back to the quirky subject, however, we would expect a crash in a similar configuration. If a 1st or 2nd person nominative object is ungrammatical because it cannot check all of its \(\varphi \)-features with T, we would expect a quirky subject will a full \(\varphi \) set to be ungrammatical if it only checks T’s [Person] feature.

Another unorthodox treatment of \(\varphi \)-features this analysis uses relates to the realization of \(\varphi \) feature specifications from the quirky subject. This split \(\varphi \) analysis argues that T expresses [Person] agreement from the quirky subject. However, this agreement looks the
same, regardless of the person specification of the quirky subject. This requires \(\varphi \)-features to manifest differently, depending on if the subject is quirky or nonquirky.

Finally, the key assumption that the split \(\varphi \) probe analysis relies on is that \(T \)'s \(\varphi \)-features probe separately to begin with. The Minimalist framework that I adopt treats \(\varphi \)-features as a bundle that probes as a whole, but this is not uncontroversial. As I described in the previous section, López's (2008) complex dependency analysis relies on \(T \)'s \(\varphi \)-features probing separately. Sigurðsson and Holmberg's (2008) independent analysis for Icelandic also requires split \(\varphi \) probing. While the issue of how \(T \)'s \(\varphi \)-features is not unanimously agreed on, the split \(\varphi \) probe analysis that I describe here is nonstandard in the sense that the Minimalist framework I adopt treats \(\varphi \)-features as a bundle.

3.3.2 Derivations

In 7, I show the derivation for a quirky subject sentence with a 3rd person nominative object. \(T \)'s [Person] feature will probe first. The quirky subject will still be active at this point, due to \(f \), so it acts as an intervening element for the [Person] probe. This probe will find the quirky subject as its goal, valuing \(f \) on the subject and valuing [Person] on \(T \). Since the quirky subject has no more unvalued, uninterpretable features, it becomes inactive.

\[
\begin{align*}
7 & TP T_{[p \neq, n, g]} [VP QSU_{[p \neq, f \neq]} OB V] \\
& \quad \text{(7) } [TP T_{[p \neq, n, g]} [VP QSU_{[p \neq, f \neq]} OB V]]
\end{align*}
\]

Next, in 8, \(T \)'s [Number] and [Gender] features will probe. Since the quirky subject is now inactive, these two features will find the nominative object as their goal. If the object is 3rd person, it will only have [Number] and [Gender]. Since \(T \)'s probe only consists of [Number] and [Gender] at this point, when these two features find the 3rd person nominative object as their goal, they will be relatively \(\varphi \)-complete with respect to each other, and agreement will obtain.

\[
\begin{align*}
8 & TP T_{[p \neq, n \neq, g \neq]} [VP QSU OB_{[n \neq, g \neq]} V] \\
& \quad \text{(8) } [TP T_{[p \neq, n \neq, g \neq]} [VP QSU OB_{[n \neq, g \neq]} V]]
\end{align*}
\]

If the nominative object is 1st or 2nd person, it will have [Person], [Number], and [Gender]. When \(T \)'s [Number] and [Gender] features probe and find the 1st or 2nd person nominative object as their goal, they will not be relatively \(\varphi \)-complete. Agreement will not obtain between \(T \) and the nominative object, the object’s abstract Case feature will not be valued, and the derivation will crash.

3.3.3 Summary

As I have shown in this section, the split \(\varphi \) probe analysis is capable of representing quirky sentences with some success. The object agreement facts arise due to the quirky subject’s
inactivity after checking with T’s [Person]. The only accessible goal for T’s [Number] and [Gender] probes then becomes the nominative object. The restriction on 1st and 2nd person nominative objects arises due to relative \(\varphi \)-incompleteness. When T probes [Number] and [Gender], a nominative object that also has [Person] will lead the derivation to crash.

Once again, however, this analysis has some problems. As I discussed earlier, this analysis requires some questionable and nonstandard assumptions with regards to unchecked features on the quirky subject. The analysis I describe here requires the quirky subject to value T’s [Person] feature, but requires an unvalued, uninterpretable feature of its own to remain active. While abstract Case might be the go-to choice, arguments from Preminger (2014) suggest that lexically-case-marked DPs do not have an abstract Case feature. To get around this, I simply call the unknown uninterpretable feature on the quirky subject \([f]\).

Due to the shortcomings and workarounds this analysis needs to adequately explain the Icelandic data, I reject it in favor of my defective T analysis, which I will describe in the following section.

3.4 Defective T

In this section, I will describe the analysis that I adopt to explain my research questions regarding the Icelandic quirky subject agreement facts and restrictions. In this analysis, T is \(\varphi \)-defective in quirky subject sentences, where it lacks a [Person] feature. When T probes its \(\varphi \)-features in a quirky subject sentence, it checks only [Number] and [Gender] with the nominative object. The object agreement facts result from the quirky subject’s inactivity. The restriction on 1st and 2nd person nominative objects results from relative \(\varphi \)-incompleteness.

3.4.1 Assumptions

The defective T analysis makes use of the Minimalist theoretical framework and assumptions that I described in §2. The only major assumption that the defective T analysis requires is that T be \(\varphi \)-defective in quirky subject sentences in the first place. However, this may be explainable due to the nature of quirky verbs themselves, but I leave that question open for now.

3.4.2 Derivations

Now that I have gone over the remaining theoretical assumption that needs to be made for the defective T analysis, I will show derivations using this analysis for both quirky subject sentences and nonquirky sentences. As before, I will start by showing derivations for the quirky subject sentences. I provide examples with both 3rd and 1st or 2nd person nominative
objects. Unlike some of the previous analyses, the [Person] specification of the quirky subject will not cause any problems. Next, I will show how the defective T analysis runs smoothly for nonquirky sentences, no matter the [Person] specification.

In 9, the quirky subject checks Case with the verb, making the subject inactive. T then probes to check its φ-features. Since the quirky subject is inactive, T will find the 3rd person nominative object as its goal. T, lacking [Person], and the 3rd person nominative object, also lacking [Person], are relatively φ-complete, so T checks its φ-features and the object checks Case, and the derivation converges.

$\begin{align*}
(9) & \quad [TP \ T_{[n\varnothing, \ g\varnothing]} \ [VP \ QSU \ OB_{[Case\varnothing, \ n\varnothing, \ g\varnothing]} \ V \]]
\end{align*}$

In the ungrammatical 10, things start to proceed as before. The quirky subject checks Case with the verb, and T probes to check its φ-features. However, if the nominative object is 1st or 2nd person, it will have a [Person] feature. When T finds the nominative object as its goal, T and the object will not be relatively φ-complete, so the derivation crashes.

$\begin{align*}
(10) & \quad [TP \ T_{[n\varnothing, \ g\varnothing]} \ [VP \ QSU \ OB_{[Case\varnothing, \ p\varnothing, \ n\varnothing, \ g\varnothing]} \ V \]]
\end{align*}$

My defective T analysis also derives nonquirky sentences. However, those derivations are omitted from this paper for reasons of space. Know, however, that T is not φ-defective in nonquirky sentences, so issues of relative φ completeness will not even arise.

3.4.3 Summary

My defective T analysis involves a φ-defective T that lacks [Person] in quirky subject constructions. I have shown how my defective T analysis can derive the observed patterns for Icelandic quirky subject sentences. For quirky subject sentences, object agreement obtains because the quirky subject is inactive, and therefore inaccessible to T. When T probes its φ-features (only [Number] and [Gender] in quirky subject sentences), the only accessible goal is the nominative object. If the nominative object is 3rd person, it will be relatively φ-complete with respect to T, and the derivation will converge. If the nominative object is 1st or 2nd person, it will not be relatively φ-complete with respect to T; the 1st or 2nd person nominative object DP will have an extra φ-feature that does not have a correlate on T (that is, the [Person] feature), which causes the derivation to crash.

The important assumption that remains to be explained is why T is φ-defective in quirky subject constructions in the first place. This may relate to T being in the extended projection of V. Quirky verbs are never agentive, so if T is in the projection of V, then perhaps this lack of agentivity translates into the absence of [participant], [author], or even the entire [Person] feature on T, à la Preminger (2014). If this is the case, however, we may run into problems
with unergative verbs that still allow 1st and 2nd person subjects. A possible alternative explanation for defective T in quirky subject sentences could be in a selection requirement on quirky verbs or in a semantic restriction on quirky verbs, rather than something syntactic.

4 Conclusion

In this paper, I have analyzed Icelandic quirky subject sentences and their agreement restrictions. Icelandic quirky subject constructions exhibit interesting phenomena beyond just the case that surfaces. In quirky subject sentences, the finite verb agrees with the nominative object rather than with the quirky subject. This goes counter to the pattern of agreement in nominative-accusative sentences, which show agreement between the subject and the verb. In addition, 1st and 2nd person nominative objects are totally blocked in quirky subject sentences. Once again, this goes against the pattern of nominative-accusative sentences, where all person specifications are allowed on subjects and objects.

In order to attempt to explain two of these phenomena, I considered four modern Minimalist analyses: (i) a φ-stacking analysis based on Richards’s (2013) case-stacking; (ii) an analysis that treats T, the quirky subject, and the nominative object all as a complex dependency (López 2008); (iii) a split φ probe analysis where [Person] probes separately from [Number] and [Gender]; and (iv) a defective T analysis, where T in quirky subject sentences lacks a [Person] feature.

While all of these analyses are moderately capable of deriving the Icelandic data patterns, only my defective T analysis does so without relying on non-Minimalist or otherwise stipulative assumptions. Future work in this area involves a more detailed explanation of why T is φ-defective in quirky subject sentences, an extension to account for other Icelandic quirky constructions, and an expansion of my analyses to accommodate more recent developments in the Minimalist Program. Until then, the defective T analysis that I have described in this paper is the best way to explain the Icelandic quirky subject data.
References

RICHARDS, NORVIN. Lardil “case stacking” and the timing of case assignment.

